Long term synaptic depression that is associated with GluR1 dephosphorylation but not alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization.
نویسندگان
چکیده
Long lasting changes in the strength of synaptic transmission in the hippocampus are thought to underlie certain forms of learning and memory. Accordingly, the molecular mechanisms that account for these changes are heavily studied. Postsynaptically, changes in synaptic strength can occur by altering the amount of neurotransmitter receptors at the synapse or by altering the functional properties of synaptic receptors. In this study, we examined the biochemical changes produced following chemically induced long term depression in acute hippocampal CA1 minislices. Using three independent methods, we found that this treatment did not lead to an internalization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Furthermore, when the plasma membrane was separated into synaptic membrane-enriched and extrasynaptic membrane-enriched fractions, we actually observed a significant increase in the concentration of AMPA receptors at the synapse. However, phosphorylation of Ser-845 on the AMPA receptor subunit GluR1 was significantly decreased throughout the neuron, including in the synaptic membrane-enriched fraction. In addition, phosphorylation of Ser-831 on GluR1 was decreased specifically in the synaptic membrane-enriched fraction. Phosphorylation of these residues has been demonstrated to control AMPA receptor function. From these data, we conclude that the decrease in synaptic strength is likely the result of a change in the functional properties of AMPA receptors at the synapse and not a decrease in the amount of synaptic receptors.
منابع مشابه
P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کاملA model of bidirectional synaptic plasticity: from signaling network to channel conductance.
In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of sites on the alpha-Amino-3-hydroxy-5-methyl-4-iso...
متن کاملA biophysical model of bidirectional synaptic plasticity: dependence on AMPA and NMDA receptors.
In many regions of the brain, including the mammalian cortex, the magnitude and direction of activity-dependent changes in synaptic strength depend on the frequency of presynaptic stimulation (synaptic plasticity), as well as the history of activity at those synapses (metaplasticity). We present a model of a molecular mechanism of bidirectional synaptic plasticity based on the observation that ...
متن کاملDeprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex.
Long-term depression (LTD) induced by low-frequency synaptic stimulation (LFS) was originally introduced as a model to probe potential mechanisms of deprivation-induced synaptic depression in visual cortex. In hippocampus, LTD requires activation of postsynaptic NMDA receptors, PKA, and the clathrin-dependent endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recepto...
متن کاملN-Methyl-D-aspartate-induced -Amino-3-hydroxy-5-methyl-4- isoxazoleproprionic Acid (AMPA) Receptor Down-regulation Involves Interaction of the Carboxyl Terminus of GluR2/3 with Pick1 LIGAND-BINDING STUDIES USING Sindbis VECTORS CARRYING AMPA RECEPTOR DECOYS*
The dynamics of -amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors, as represented by their exocytosis, endocytosis and cytoskeletal linkage, has often been implicated in N-methyl-D-aspartate (NMDA)-dependent synaptic plasticity. To explore the molecular mechanisms underlying the AMPA receptor dynamics, cultured hippocampal neurons were stimulated with 100 M NM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 283 48 شماره
صفحات -
تاریخ انتشار 2008